
Brownian motion in wedges, last passage time and the second arc-sine law

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 L255

(http://iopscience.iop.org/0305-4470/36/17/101)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) L255–L261 PII: S0305-4470(03)59549-X

LETTER TO THE EDITOR

Brownian motion in wedges, last passage time and the
second arc-sine law

Alain Comtet1,2 and Jean Desbois1
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Abstract
We consider a planar Brownian motion starting from O at time t = 0 and
stopped at t = 1 and a set F = {OIi; i = 1, 2, . . . , n} of n semi-infinite
straight lines emanating from O. Denoting by g the last time when F is reached
by the Brownian motion, we compute the probability law of g. In particular,
we show that, for a symmetric F and even n values, this law can be expressed as
a sum of arcsin or (arcsin)2 functions. The original result of Levy is recovered
as the special case n = 2. A relation with the problem of reaction–diffusion of
a set of three particles in one dimension is discussed.

PACS numbers: 02.70.−c, 03.65.−w

The first arc-sine law gives the distribution of the number of positive partial sums in a sequence
of independent and identically distributed random variables. It was first discovered by Levy
in his study of the linear Brownian motion and then discussed a lot for its relevance to the
coin-tossing game [1] and also in the wider context of occupation time distributions [2]. The
second arc-sine law, also discovered by Levy [3], provides information on the last passage
time which can be stated as follows. Consider a linear Brownian motion B(τ) starting at 0
at time t = 0 and stopped at time t and let g be the last time when 0 is visited. The random
variable

g = sup{τ < t, B(τ) = 0} (1)

satisfies3

P(g < u) = 2

π
arcsin

√
u

t
(2)

with the density

P(u) = 1

π

1√
u(t − u)

. (3)

3 The fact that the occupation time
∫ t

0 dτ θ [B(τ)] and the last passage time g are identically distributed is a very
striking result which has been discussed in the mathematical literature under the name of ‘fluctuations identities’ [4].
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Figure 1. The frontier F = {OI1,OI2} of the wedge divides the plane into two regions,
(1) and (2).

Over the years, this result has been extended in several different directions (see, for instance,
[5, 6]) and is still a subject of active research in probability [7]. Generalizations of the first
arc-sine law have also been considered in different contexts (one-dimensional diffusion in a
random medium [8], Brownian motion on graphs [9] and, also, in two dimensions [10]).

The purpose of this letter is to present a two-dimensional generalization of the law (2).
As a by-product of this result we also derive an explicit expression for the first passage time
distribution which is relevant for a problem of reaction–diffusion involving three identical
particles.

Exit problems for Brownian motion have a rich history and several applications in physics
(see, for instance, [11]). They are in particular related to problems of capture of independent
Brownian particles diffusing on the line. This connection was first anticipated by Arratia [12]
and then discussed in the mathematics [13, 14] and physics literature [11, 15–17] mainly in the
context of reaction–diffusion models. In the case of three particles, the process (x1(t)− x2(t),
x2(t)−x3(t)) defines a certain diffusion in a quadrant of R2. By a suitable transformation, this
process can be mapped on a diffusion inside a wedge whose angle depends on the diffusion
constants. Using this correspondence, it has been shown that the first passage time through
the wedge gives the survival probability; a quantity which decays with a power law which
only depends on the angle of the wedge [16, 18]. At the end of this work, we exploit
this correspondance to compute exactly (and not only asymptotically) the first collision time
distribution for a three-particle problem. Our approach is based on an identity relating the
first passage and last passage distributions which has an interesting probabilistic interpretation
[19].

To begin with, let us start by considering, as in figure 1, a wedge of apex O and angle φ

with a boundary F = {OIi; i = 1, 2} and a two-dimensional Brownian motion �r(t) starting
from O at t = 0 and stopped at t somewhere in the plane. We denote by g the last time when F
is visited and compute the probability P(g < u). Due to the scaling property of the Brownian
motion, this distribution is a function of the reduced variable u/t . In the following, we will
for simplicity set t = 1.

Suppose that the particle reaches some point �r0 at time t = u (see figure 1). Clearly, if �r0

belongs to region (1) (resp. (2)), the particle must stay in (1) (resp. (2)) between t = u and
t = 1 in order to satisfy the condition g < u. We can therefore write

P(g < u) = P (1)(u) + P (2)(u). (4)

Expressing the fact that the propagation is free between t = 0 and t = u and that the
particle has not hit the boundary between t = u and t = 1, we get

P (i)(u) =
∫

(i)

d2 �r0

∫
(i)

d2�r 1

2πu
e− r2

0
2u G(i)(�r, 1; �r0, u) i = 1, 2. (5)
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The propagator G(1) satisfying the diffusion equation with Dirichlet boundary conditions on
F is given by

G(1) = 2

φ(1 − u)

∞∑
m=1

sin
mθπ

φ
sin

mθ0π

φ
e− r2 +r2

0
2(1−u) I mπ

φ

(
rr0

1 − u

)
(6)

where Iν is a modified Bessel function and the notation are defined in figure 1.
Performing the spatial integrations in (5), we get [20]

P (1)(u) = 1

πφ

∞∑
p,k=0

u
p π

φ
+k+ π

2φ

[
�

(
p π

φ
+ k + π

2φ

)]2

�
( 2pπ

φ
+ π

φ
+ k + 1

) 1

k!
(7)

P (2) is obtained by the change φ → 2π − φ in (7). Therefore, for arbitrary values of φ the
law P(g < u) is written in terms of a double series.

As a check, let us first consider the special case φ = π . We may write

P(g < u) = 2P (1)(u) = 2

π2
u1/2

∞∑
p,k=0

up+k

k!

[�(p + k + 1/2)]2

(2p + k + 1)!
(8)

= 2

π
arcsin

√
u. (9)

The fact that one recovers Levy’s second arc-sine law is not surprising since, when φ = π,

F divides the plane into two half-planes. Therefore, the component of the Brownian motion
parallel to F factorizes and plays no role: we are thus left with a one-dimensional problem.

Coming back to general values of φ, we can derive the behaviour of the probability density
P

(≡ dP (g<u)

du

)
when u → 0 and u → 1. By using (4) and (7), one gets a power-law behaviour

when u → 0+

P(u) ∼ 1

π
u−1/2 for φ = π (10)

P(u) ∼ C(µ)u
µ

2 −1 for φ �= π (11)

with

C(µ) = µ2

2π2

[
�

(
µ

2

)]2

�(µ + 1)
(12)

and

µ = π

2π − φ
when 0 < φ < π (13)

µ = π

φ
when π < φ < 2π. (14)

Now, for the limit u → 1−, using asymptotic expansions for � functions and also an
equivalence between series and integrals, we get

P(u) ∼ 1

π

1√
1 − u

(15)

i.e. the same behaviour as for (3). Expression (15) does not depend on φ and we have already
seen that φ = π gives Levy’s law. Remark that u → 1− corresponds to Brownian curves that
stop close to F. Therefore, between t = u and t = 1, the Brownian particle only ‘sees’ an
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Figure 2. F consists of n semi-infinite straight lines starting from O.

infinitesimal part of F, i.e. a straight line as for φ = π . This is, in our opinion, why the result
(15) does not depend on φ. Actually, it only depends on the fact that the plane is divided by F
into two regions. We will come back to this point later on.

To go further, let us remark that for F = {OIi; i = 1, 2, . . . , n} as in figure 2, (4) becomes
simply

P(g < u) =
n∑

i=1

P (i)(u). (16)

(Replace φ by φi in (7) in order to get P (i).)
Let us now specialize to the situation of figure 3 when F is symmetric and n is even

(n ≡ 2l). In that case, F consists of l infinite straight lines crossing at point O and dividing
the plane into 2l equal angular sectors, each one of angle φ = π/l.

Equation (16) is written as

P(g < u) ≡ Pl(u) = 2

π2
l2ul/2

∞∑
p=0

ulp

∞∑
k=0

[�(lp + k + l/2)]2

(2lp + l + k)!

uk

k!
(17)

l being an integer, we can sum the series and, finally, get

Pl(u) = 2l

π

(
l−1∑
k=0

arcsin

(√
u cos

2πk

l

))
l odd (18)

Pl(u) = 2l

π2

(
l−1∑
k=0

(−1)k
(

arcsin

(√
u cos

πk

l

))2
)

l even (19)

which is the central result of this paper.
We remark that the correct small u behaviour for Pl(u) follows from the two identities

l−1∑
k=0

(
cos

2πk

l

)m

= 0 l odd m = 1, 3, . . . , l − 2 (20)

l−1∑
k=0

(−1)k
(

cos
πk

l

)m

= 0 l even m = 0, 2, 4, . . . , l − 2. (21)
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(b) l=3

OO

(a) l=2

Figure 3. F is symmetric. The analytic form of P (g < u) will depend on the parity of l. Thus, it
will be different for cases (a) and (b). For further explanations, see the text.
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Figure 4. The distribution functions Pl(u) for l = 1, . . . , 5.

In particular

P1(u) = 2

π
arcsin

√
u (22)

P2(u) = 4

π2
(arcsin

√
u)2 = P 2

1 (23)

P3(u) = 6

π

(
arcsin

√
u − 2 arcsin

√
u

2

)
(24)

P4(u) = 8

π2

(
(arcsin

√
u)2 − 2

(
arcsin

√
u

2

)2
)

(25)

P5(u) = 10

π

(
arcsin

√
u − 2 arcsin

(
cos

π

5

√
u
)

+ 2 arcsin

(
cos

2π

5

√
u

))
. (26)

These functions are displayed in figure 4.
As expected, Levy’s second arc-sine law is recovered in (22). Moreover, the result (23)

is straightforward since, when l = 2, the two components of the Brownian motion factorize.
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Thus, for l = 2, (arcsin)2 functions appear. What is surprising is that they will appear each
time l is even while being absent when l is odd.

For the probability density, Pl

(≡ dPl

du

)
, with (18) and (19), we obtain

Pl(u) ∼ l

π

1√
1 − u

when u → 1−. (27)

This is consistent with (15) that corresponds to l = 1.
We now present a formula which relates the first passage and the last passage time

distributions. The starting point is (4) and (5) which may be rewritten as

P(g < u) =
∫

Pr(T > 1 − u|r0)
1

u
e− r2

0
2u r0 dr0 (28)

where Pr(T > (1 − u)|r0) is the probability distribution of the first passage time T through F,
given that the process starts at r0. Then, by scaling one has

Pr(T > (1 − u)|r0) = Pr

(
T >

(1 − u)

r0
2

|1
)

. (29)

By a simple change of variables it follows that

P

(
g <

1

1 + t

)
=

∫
Pr

(
T >

t

2x
|1

)
e−x dx. (30)

Therefore

P

(
g <

1

1 + t

)
= E

(
e− t

2T

)
(31)

which is a relation between the first passage characteristic function for a process starting in
the wedge at a distance r0 = 1 from the apex O and the probability distribution of the last
passage time. Interestingly enough, this formula can also be derived in a more intrinsic fashion
using only time inversion and scaling [19]. As an application, let us derive the density of first
passage time in a wedge of angle φ = π

3 . In the context of the capture problem mentioned
in the introduction, this corresponds to a set of three identical and independent particles [13].
In this case, the distribution P(g) is given in equation (24). By an inverse Laplace transform
(31) gives the density of first passage time:

f (T ) = 6

π
3
2 T

e− 1
2T

(∫ √
1

2T

0
ey2

dy − 2
∫ √

1
8T

0
ey2

dy

)
. (32)

One can check that this formula is in agreement with (16) of [13] which expresses the first
collision time probability for a given set of initial conditions. By averaging this formula over
the angle and setting r = 1 one recovers (32).
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