Brownian motion in wedges, last passage time and the second arc-sine law

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys. A: Math. Gen. 36 L255
(http://iopscience.iop.org/0305-4470/36/17/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 02/06/2010 at 11:37

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Brownian motion in wedges, last passage time and the second arc-sine law

Alain Comtet ${ }^{1,2}$ and Jean Desbois ${ }^{1}$
${ }^{1}$ Laboratoire de Physique Théorique et Modèles Statistiques. Université Paris-Sud, Bât. 100, F-91405 Orsay Cedex, France
${ }^{2}$ Institut Henri Poincaré, 11 rue Pierre et Marie Curie, 75005, Paris, France

Received 12 February 2003, in final form 19 March 2003
Published 16 April 2003
Online at stacks.iop.org/JPhysA/36/L255

Abstract

We consider a planar Brownian motion starting from O at time $t=0$ and stopped at $t=1$ and a set $F=\left\{O I_{i} ; i=1,2, \ldots, n\right\}$ of n semi-infinite straight lines emanating from O. Denoting by g the last time when F is reached by the Brownian motion, we compute the probability law of g. In particular, we show that, for a symmetric F and even n values, this law can be expressed as a sum of arcsin or $(\arcsin)^{2}$ functions. The original result of Levy is recovered as the special case $n=2$. A relation with the problem of reaction-diffusion of a set of three particles in one dimension is discussed.

PACS numbers: 02.70.-c, 03.65.-w

The first arc-sine law gives the distribution of the number of positive partial sums in a sequence of independent and identically distributed random variables. It was first discovered by Levy in his study of the linear Brownian motion and then discussed a lot for its relevance to the coin-tossing game [1] and also in the wider context of occupation time distributions [2]. The second arc-sine law, also discovered by Levy [3], provides information on the last passage time which can be stated as follows. Consider a linear Brownian motion $B(\tau)$ starting at 0 at time $t=0$ and stopped at time t and let g be the last time when 0 is visited. The random variable

$$
\begin{equation*}
g=\sup \{\tau<t, B(\tau)=0\} \tag{1}
\end{equation*}
$$

satisfies ${ }^{3}$

$$
\begin{equation*}
P(g<u)=\frac{2}{\pi} \arcsin \sqrt{\frac{u}{t}} \tag{2}
\end{equation*}
$$

with the density

$$
\begin{equation*}
\mathcal{P}(u)=\frac{1}{\pi} \frac{1}{\sqrt{u(t-u)}} \tag{3}
\end{equation*}
$$

${ }^{3}$ The fact that the occupation time $\int_{0}^{t} \mathrm{~d} \tau \theta[B(\tau)]$ and the last passage time g are identically distributed is a very striking result which has been discussed in the mathematical literature under the name of 'fluctuations identities' [4].

(2)

Figure 1. The frontier $F=\left\{O I_{1}, O I_{2}\right\}$ of the wedge divides the plane into two regions, (1) and (2).

Over the years, this result has been extended in several different directions (see, for instance, $[5,6])$ and is still a subject of active research in probability [7]. Generalizations of the first arc-sine law have also been considered in different contexts (one-dimensional diffusion in a random medium [8], Brownian motion on graphs [9] and, also, in two dimensions [10]).

The purpose of this letter is to present a two-dimensional generalization of the law (2). As a by-product of this result we also derive an explicit expression for the first passage time distribution which is relevant for a problem of reaction-diffusion involving three identical particles.

Exit problems for Brownian motion have a rich history and several applications in physics (see, for instance, [11]). They are in particular related to problems of capture of independent Brownian particles diffusing on the line. This connection was first anticipated by Arratia [12] and then discussed in the mathematics [13, 14] and physics literature [11, 15-17] mainly in the context of reaction-diffusion models. In the case of three particles, the process $\left(x_{1}(t)-x_{2}(t)\right.$, $\left.x_{2}(t)-x_{3}(t)\right)$ defines a certain diffusion in a quadrant of R^{2}. By a suitable transformation, this process can be mapped on a diffusion inside a wedge whose angle depends on the diffusion constants. Using this correspondence, it has been shown that the first passage time through the wedge gives the survival probability; a quantity which decays with a power law which only depends on the angle of the wedge [16, 18]. At the end of this work, we exploit this correspondance to compute exactly (and not only asymptotically) the first collision time distribution for a three-particle problem. Our approach is based on an identity relating the first passage and last passage distributions which has an interesting probabilistic interpretation [19].

To begin with, let us start by considering, as in figure 1, a wedge of apex O and angle ϕ with a boundary $F=\left\{O I_{i} ; i=1,2\right\}$ and a two-dimensional Brownian motion $\vec{r}(t)$ starting from O at $t=0$ and stopped at t somewhere in the plane. We denote by g the last time when F is visited and compute the probability $P(g<u)$. Due to the scaling property of the Brownian motion, this distribution is a function of the reduced variable u / t. In the following, we will for simplicity set $t=1$.

Suppose that the particle reaches some point \vec{r}_{0} at time $t=u$ (see figure 1). Clearly, if $\overrightarrow{r_{0}}$ belongs to region (1) (resp. (2)), the particle must stay in (1) (resp. (2)) between $t=u$ and $t=1$ in order to satisfy the condition $g<u$. We can therefore write

$$
\begin{equation*}
P(g<u)=P^{(1)}(u)+P^{(2)}(u) . \tag{4}
\end{equation*}
$$

Expressing the fact that the propagation is free between $t=0$ and $t=u$ and that the particle has not hit the boundary between $t=u$ and $t=1$, we get

$$
\begin{equation*}
P^{(i)}(u)=\int_{(i)} \mathrm{d}^{2} \vec{r}_{0} \int_{(i)} \mathrm{d}^{2} \vec{r} \frac{1}{2 \pi u} \mathrm{e}^{-\frac{r_{0}^{2}}{2 u}} G^{(i)}\left(\vec{r}, 1 ; \vec{r}_{0}, u\right) \quad i=1,2 . \tag{5}
\end{equation*}
$$

The propagator $G^{(1)}$ satisfying the diffusion equation with Dirichlet boundary conditions on F is given by

$$
\begin{equation*}
G^{(1)}=\frac{2}{\phi(1-u)} \sum_{m=1}^{\infty} \sin \frac{m \theta \pi}{\phi} \sin \frac{m \theta_{0} \pi}{\phi} \mathrm{e}^{-\frac{r^{2}+r_{0}^{2}}{2(1-u)}} \frac{I m \pi}{\phi}\left(\frac{r r_{0}}{1-u}\right) \tag{6}
\end{equation*}
$$

where I_{v} is a modified Bessel function and the notation are defined in figure 1.
Performing the spatial integrations in (5), we get [20]

$$
\begin{equation*}
P^{(1)}(u)=\frac{1}{\pi \phi} \sum_{p, k=0}^{\infty} u^{p \frac{\pi}{\phi}+k+\frac{\pi}{2 \phi}} \frac{\left[\Gamma\left(p \frac{\pi}{\phi}+k+\frac{\pi}{2 \phi}\right)\right]^{2}}{\Gamma\left(\frac{2 p \pi}{\phi}+\frac{\pi}{\phi}+k+1\right)} \frac{1}{k!} \tag{7}
\end{equation*}
$$

$P^{(2)}$ is obtained by the change $\phi \rightarrow 2 \pi-\phi$ in (7). Therefore, for arbitrary values of ϕ the law $P(g<u)$ is written in terms of a double series.

As a check, let us first consider the special case $\phi=\pi$. We may write

$$
\begin{align*}
P(g<u) & =2 P^{(1)}(u)=\frac{2}{\pi^{2}} u^{1 / 2} \sum_{p, k=0}^{\infty} \frac{u^{p+k}}{k!} \frac{[\Gamma(p+k+1 / 2)]^{2}}{(2 p+k+1)!} \tag{8}\\
& =\frac{2}{\pi} \arcsin \sqrt{u} . \tag{9}
\end{align*}
$$

The fact that one recovers Levy's second arc-sine law is not surprising since, when $\phi=\pi$, F divides the plane into two half-planes. Therefore, the component of the Brownian motion parallel to F factorizes and plays no role: we are thus left with a one-dimensional problem.

Coming back to general values of ϕ, we can derive the behaviour of the probability density $\mathcal{P}\left(\equiv \frac{\mathrm{d} P(g<u)}{\mathrm{d} u}\right)$ when $u \rightarrow 0$ and $u \rightarrow 1$. By using (4) and (7), one gets a power-law behaviour when $u \rightarrow 0^{+}$

$$
\begin{array}{ll}
\mathcal{P}(u) \sim \frac{1}{\pi} u^{-1 / 2} & \text { for } \quad \phi=\pi \\
\mathcal{P}(u) \sim C(\mu) u^{\frac{\mu}{2}-1} & \text { for } \quad \phi \neq \pi \tag{11}
\end{array}
$$

with

$$
\begin{equation*}
C(\mu)=\frac{\mu^{2}}{2 \pi^{2}} \frac{\left[\Gamma\left(\frac{\mu}{2}\right)\right]^{2}}{\Gamma(\mu+1)} \tag{12}
\end{equation*}
$$

and

$$
\begin{array}{lll}
\mu=\frac{\pi}{2 \pi-\phi} & \text { when } & 0<\phi<\pi \\
\mu=\frac{\pi}{\phi} & \text { when } & \pi<\phi<2 \pi \tag{14}
\end{array}
$$

Now, for the limit $u \rightarrow 1^{-}$, using asymptotic expansions for Γ functions and also an equivalence between series and integrals, we get

$$
\begin{equation*}
\mathcal{P}(u) \sim \frac{1}{\pi} \frac{1}{\sqrt{1-u}} \tag{15}
\end{equation*}
$$

i.e. the same behaviour as for (3). Expression (15) does not depend on ϕ and we have already seen that $\phi=\pi$ gives Levy's law. Remark that $u \rightarrow 1^{-}$corresponds to Brownian curves that stop close to F. Therefore, between $t=u$ and $t=1$, the Brownian particle only 'sees' an

Figure 2. F consists of n semi-infinite straight lines starting from O.
infinitesimal part of F, i.e. a straight line as for $\phi=\pi$. This is, in our opinion, why the result (15) does not depend on ϕ. Actually, it only depends on the fact that the plane is divided by F into two regions. We will come back to this point later on.

To go further, let us remark that for $F=\left\{O I_{i} ; i=1,2, \ldots, n\right\}$ as in figure 2, (4) becomes simply

$$
\begin{equation*}
P(g<u)=\sum_{i=1}^{n} P^{(i)}(u) . \tag{16}
\end{equation*}
$$

(Replace ϕ by ϕ_{i} in (7) in order to get $P^{(i)}$.)
Let us now specialize to the situation of figure 3 when F is symmetric and n is even ($n \equiv 2 l$). In that case, F consists of l infinite straight lines crossing at point O and dividing the plane into $2 l$ equal angular sectors, each one of angle $\phi=\pi / l$.

Equation (16) is written as

$$
\begin{equation*}
P(g<u) \equiv P_{l}(u)=\frac{2}{\pi^{2}} l^{2} u^{l / 2} \sum_{p=0}^{\infty} u^{l p} \sum_{k=0}^{\infty} \frac{[\Gamma(l p+k+l / 2)]^{2}}{(2 l p+l+k)!} \frac{u^{k}}{k!} \tag{17}
\end{equation*}
$$

l being an integer, we can sum the series and, finally, get

$$
\begin{array}{ll}
P_{l}(u)=\frac{2 l}{\pi}\left(\sum_{k=0}^{l-1} \arcsin \left(\sqrt{u} \cos \frac{2 \pi k}{l}\right)\right) & l \text { odd } \\
P_{l}(u)=\frac{2 l}{\pi^{2}}\left(\sum_{k=0}^{l-1}(-1)^{k}\left(\arcsin \left(\sqrt{u} \cos \frac{\pi k}{l}\right)\right)^{2}\right) & l \text { even } \tag{19}
\end{array}
$$

which is the central result of this paper.
We remark that the correct small u behaviour for $P_{l}(u)$ follows from the two identities

$$
\begin{array}{ll}
\sum_{k=0}^{l-1}\left(\cos \frac{2 \pi k}{l}\right)^{m}=0 & l \text { odd } \quad m=1,3, \ldots, l-2 \\
\sum_{k=0}^{l-1}(-1)^{k}\left(\cos \frac{\pi k}{l}\right)^{m}=0 & l \text { even } \quad m=0,2,4, \ldots, l-2 \tag{21}
\end{array}
$$

Figure 3. F is symmetric. The analytic form of $P(g<u)$ will depend on the parity of l. Thus, it will be different for cases (a) and (b). For further explanations, see the text.

Figure 4. The distribution functions $P_{l}(u)$ for $l=1, \ldots, 5$.

In particular
$P_{1}(u)=\frac{2}{\pi} \arcsin \sqrt{u}$
$P_{2}(u)=\frac{4}{\pi^{2}}(\arcsin \sqrt{u})^{2}=P_{1}^{2}$
$P_{3}(u)=\frac{6}{\pi}\left(\arcsin \sqrt{u}-2 \arcsin \frac{\sqrt{u}}{2}\right)$
$P_{4}(u)=\frac{8}{\pi^{2}}\left((\arcsin \sqrt{u})^{2}-2\left(\arcsin \sqrt{\frac{u}{2}}\right)^{2}\right)$
$P_{5}(u)=\frac{10}{\pi}\left(\arcsin \sqrt{u}-2 \arcsin \left(\cos \frac{\pi}{5} \sqrt{u}\right)+2 \arcsin \left(\cos \frac{2 \pi}{5} \sqrt{u}\right)\right)$.
These functions are displayed in figure 4.
As expected, Levy's second arc-sine law is recovered in (22). Moreover, the result (23) is straightforward since, when $l=2$, the two components of the Brownian motion factorize.

Thus, for $l=2,(\arcsin)^{2}$ functions appear. What is surprising is that they will appear each time l is even while being absent when l is odd.

For the probability density, $\mathcal{P}_{l}\left(\equiv \frac{\mathrm{~d} P_{l}}{\mathrm{~d} u}\right)$, with (18) and (19), we obtain

$$
\begin{equation*}
\mathcal{P}_{l}(u) \sim \frac{l}{\pi} \frac{1}{\sqrt{1-u}} \quad \text { when } \quad u \rightarrow 1^{-} . \tag{27}
\end{equation*}
$$

This is consistent with (15) that corresponds to $l=1$.
We now present a formula which relates the first passage and the last passage time distributions. The starting point is (4) and (5) which may be rewritten as

$$
\begin{equation*}
P(g<u)=\int \operatorname{Pr}\left(T>1-u \mid r_{0}\right) \frac{1}{u} \mathrm{e}^{-\frac{r_{0}^{2}}{2 u}} r_{0} \mathrm{~d} r_{0} \tag{28}
\end{equation*}
$$

where $\operatorname{Pr}\left(T>(1-u) \mid r_{0}\right)$ is the probability distribution of the first passage time T through F, given that the process starts at r_{0}. Then, by scaling one has

$$
\begin{equation*}
\operatorname{Pr}\left(T>(1-u) \mid r_{0}\right)=\operatorname{Pr}\left(\left.T>\frac{(1-u)}{r_{0}^{2}} \right\rvert\, 1\right) . \tag{29}
\end{equation*}
$$

By a simple change of variables it follows that

$$
\begin{equation*}
P\left(g<\frac{1}{1+t}\right)=\int \operatorname{Pr}\left(\left.T>\frac{t}{2 x} \right\rvert\, 1\right) \mathrm{e}^{-x} \mathrm{~d} x \tag{30}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
P\left(g<\frac{1}{1+t}\right)=E\left(\mathrm{e}^{-\frac{t}{2 T}}\right) \tag{31}
\end{equation*}
$$

which is a relation between the first passage characteristic function for a process starting in the wedge at a distance $r_{0}=1$ from the apex O and the probability distribution of the last passage time. Interestingly enough, this formula can also be derived in a more intrinsic fashion using only time inversion and scaling [19]. As an application, let us derive the density of first passage time in a wedge of angle $\phi=\frac{\pi}{3}$. In the context of the capture problem mentioned in the introduction, this corresponds to a set of three identical and independent particles [13]. In this case, the distribution $P(g)$ is given in equation (24). By an inverse Laplace transform (31) gives the density of first passage time:

$$
\begin{equation*}
f(T)=\frac{6}{\pi^{\frac{3}{2}} T} \mathrm{e}^{-\frac{1}{2 T}}\left(\int_{0}^{\sqrt{\frac{1}{2 T}}} \mathrm{e}^{y^{2}} \mathrm{~d} y-2 \int_{0}^{\sqrt{\frac{T}{8 T}}} \mathrm{e}^{y^{2}} \mathrm{~d} y\right) \tag{32}
\end{equation*}
$$

One can check that this formula is in agreement with (16) of [13] which expresses the first collision time probability for a given set of initial conditions. By averaging this formula over the angle and setting $r=1$ one recovers (32).

Acknowledgment

We are particularly grateful to Professor Marc Yor for introducing us to the subject and for pointing out (31).

References

[1] Feller W 1957 An Introduction to Probability Theory and its Applications (New York: Wiley)
[2] Watanabe S 1995 Proc. Symp. in Pure Maths vol 57
[3] Levy P 1948 Processus Stochastiques et Mouvement Brownien (Paris: Editions Jacques Gabay)
[4] Bertoin J 1996 Levy Processes (Cambridge: Cambridge University Press)
[5] Barlow M, Pitman J and Yor M 1989 Sém. Probabilités XXIII (Lecture Notes in Mathematics vol 1372) (Berlin: Springer)
[6] Yor M 1992 Some Aspects of Brownian Motion, Part 1, Lectures in Mathematics (Zurich/Basle: ETH Zurich/ Birkhauser)
[7] Donati-Martin C, Shi Z and Yor M 2000 Ergod. Th. Dynam. Sys. 20709
[8] Majumdar S N and Comtet A 2002 Phys. Rev. Lett. 8960601
[9] Desbois J 2002 J. Phys. A: Math. Gen. 35 L673
[10] Bingham N H and Doney R A 1988 J. Appl. Prob. 25120
[11] Redner S 2001 A Guide to First-Passage Processes (Cambridge: Cambridge University Press)
[12] Arratia R 1979 Coalescing Brownian motion on the line Phd Thesis University of Wisconsin, Madison, WI
[13] O'Connell N and Unwin A 1992 Stoch. Process. Appl. 43291
[14] Biane P 1994 Stoch. Process. Appl. 53233
[15] Fisher M E 1984 J. Stat. Phys. 34667
[16] Ben-Avraham D 1988 J. Chem. Phys. 88941
[17] Monthus C 1996 Phys. Rev. E 544844
[18] De Blassie RD 1987 Prob. Th. Rel. Fields 75279
[19] Yor M 2002 Private communication
[20] Gradsteyn I S and Ryzhik I M 1980 Tables of Integrals, Series, and Products (New York: Academic)

